Building an AI-based image-classifier application
import numpy as np import os from PIL import Image from keras import datasets train, test = datasets.mnist.load_data() inds = np.random.choice(np.arange(len(test[1])), len(test[1]), replace = False) test_img = test[0][inds] test_lbl = test[1][inds] test = (test_img[:5000], test_lbl[:5000]) sample = (test_img[5000:], test_lbl[5000:]) os.mkdir('MNIST') os.mkdir('MNIST/Train') os.mkdir('MNIST/Test') os.mkdir('MNIST/Sample') digits = np.unique(train[1]) for i in range(len(digits)): os.mkdir('MNIST/Train/' + str(digits[i])) os.mkdir('MNIST/Test/' + str(digits[i])) for i in range(len(train[0])): img_jpg = Image.fromarray(train[0][i]) img_jpg.save('MNIST/Train/' + str(train[1][i]) + '/img_' + str(i) + '.jpg') for i in range(len(test[0])): img_jpg = Image.fromarray(test[0][i]) img_jpg.save('MNIST/Test/' + str(test[1][i]) + '/img_' + str(i) + '.jpg') for i in range(len(sample[0])): img_jpg = Image.fromarray(sample[0][i]) img_jpg.save('MNIST/Sample/img_' + str(i) + '.jpg')